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1. Introduction

Let {xn} {(n=0,1,...) be a segquence of independent,
identically distributed (i.i.d.) random variables (r.v.s)

with distribution function (d.f.) F , and define

(1.1) M =max(xl,...,xn) =3 max(xo,xl,...,x )

n n-1

In a classic paper Gnedenko (1943) exhibited the class G
of all possible non-degenerate limit laws that can arise from
such sequences {Mn} , and discussed domains of attraction ,

for the elements of G (that is, given the common d.f. F

of the xn . what properties of F determine whether G € G
will be its limit law?). This work has been expounded and
extended in de Haan's (1970) tract, see also Galambos ’1978).

The present paper has its origins in the asymptotic behaviour
of an extreme case of a storage model (Daley and Haslett (1982)
and Daley (1983)), namely, in studying possible limit laws as

y+1 of the r.v.
(1.2) Y(y) = supn20 {ynxn} ’ 0<y<l ,

in the case that X >0 a.s. This observation led us to

investigate limit laws using sequences {wn(Y)} of weight
functions more general than the geometric, and also to consider

the possibility of r.v.s 1like

Hi

(1.3) Z(%) SUpP. .o {xn-né} (y>0)

with the prototype sequence of translates {né} replaced by
the indexed sequence {vn(é)}.

In what follows, we always take 0<y<1 , where .

Tt e v
=T




wo(y) = 1> wn(v) > wn+1(Y)-+0 (n-=), wn(y) -1 (y-1) ,
and 0 < 6§ < » , where
volé) = 0cv (8) cv  1(8) > (n>=) and v (&) >0 (6+0) .

In section 2 we discuss the existence (i.e., a.s. finiteness)

of r.v.s like Y(y) and@ 2(8§) ,

behaviour in sections 3, 4 and 5. When the limit law of

of the double exponential type, limit laws exist for both

and Z({) and are also of double exponential type; when

any other limit law, a limit law for Y (v)

M

and investigate the limit law

.
Y (y

-M

will exist and for

is
)
has

Z(2;

may exist, but not all three limit laws will be the same. The

results are summarized in section 6 where also a duality between Y (%)

and Z(¢) is exploited. Connections between the functional

equation of Gnedenko's general theory and the present limit laws
are exhibited in section 3, and there and in the subseguent
section we exhibit non-degenerate limit laws lying outside G

For the sequences {wn} involved, the supremum is evidently

zero unless Pr{X0 >0}>0 , while for {vn}, if either of the

r.v.s 2(8) and Z(8)+A has a limit law (where A is any

constant), then so does the other and the laws are of the same

type. Accordingly we shall assume throughout that

(1.4) Pr{X<0} =0, Pr{x>0i>0,

and define the positive (and possibly infinite) quantity

(1.5) £ = sup{x : F(x) <1}.
More generally than (1.2) and (1.3) we define
(1.6) M(y) = M(y;w) = sup {wn(y)xn} ,
n>0
(1.7) Z(8) = 2(8;v) = sup {xn-vn(éb} ,

n >0




1.3

and

i1

(1.8) M(v,6) M(y,68:w,v) = sup {wn(y)xn-vn(é)}

n>0
Observe that if wn(yd =1 or 0 as n(l-y) < or >1, then

(1.9) M(1-1/n;w) =M .,

so any results that we prove for M(y;w) must hold true for

M 1.




2. Existence.

In this section we discuss the a.s. finiteness of the r.v.

(2.1) M = M(w,v) = nsx:po{wnxn--vn}

for given sequences {wn} and {vn} for which

v 20, 0<w <1 .

THEOREM 1. (a) Either M<e® a.s. or M=« a.s,

{b) M<» a.,s. if and only if either

(1) &<=, or

(ii) L=, and {vn} and {wn}

are such that

(2.2) ngoll-r((an)/wn)] < o

for some finite x.

Remarks . If w, = 0 for any n then the corresponding
term in the sum at (2.2) is taken equal to zero.

The condition at (2.2) can be expressed in terms of a
functional inverse as follows, assuming that (x+vn)wn ultirately
increases monotonically. This is true in particular when {vn‘
and {wn} are sequences as in section 1. And, note that
(2.2) cannot hold when { == unless either v, *e or
wn-»o (or both) as n-+»« ; then it is no loss of generality

to take x=1 as in the following.

Let h(y) be any non-decreasing function satisfying

for y > 1

TS e e a g mw ta . -
. -



(2.3) h(y) < inf{n:(1+vn)/wn >y} < hiy)+1 .
Then (2.2) 1is equivalent to the condition

(2.4) Eh (X)

A
B8
.

For example, when Vi = 0 and wWo T yn , Wwe can take

h(y) = (logy) /log(l/y) , and the finiteness of
E log(max(l,X)) = E log (1+(X~1) )

ensures that Y(y) at (1.2) is well-defined, as asserted

in the introduction.
Similarly, when wo = 1 and v, = né , we can take
h(y) = (y-1)/8 , and so the a.s. finiteness of 2Z(¢§) at (1.3)

is equivalent to requiring EX+< o

Proof of Theorem 1. (a) Since M is a function of the

_independent r.v.s {wnxn-vn}, the zero-one law implies that

PriM<eo} =0 or 1.

(b) If (i) holds then M<= a.s. by
inspection of the defining relation (2.1). 1In proving (ii)
we may assume that wn> 0 for all n . Now M=x a.s,.

if and only if for all x‘',

Pr{wnxn--vn >x infinitely often} =1 ,

and by the Borel-Cantelli lemma for independent events, this

condition is equivalent to

©
o= } Pr{w_X_ - v_ > x}
n=0 n n n

= nzou - Fllx+v )/w )] .




-~

3. Gnedenko's class G and limit laws for M(y,d) .

It is appropriate at this stage to recall certain facts
about the class 6 . First, by a limit law G (understood to
be non-degerate) we mean that for some sequence of constants

{an} ' {bn} the sequence of d.f.s {Fn} has
anﬂbﬁ + G{cx+d) (n -+ «)

for all points of continuity cx+d of G. Here, <¢>0 and

d is any constant. Thus, we do not distinguish between G(x)

and G(cx+d) in identifying this d.f. as a limit law: we say that

G(x) and G{(cx+d) are of the same type.
Next, recall that Gnedenko (1943) identified the class
of limit laws for {Mn) as comprising all d.f.s G such that,

for every integer k=2,3,... there exist constants a b

k' Tk

for which
(3.1) Gxnk = Glayx + by) (all real x).

Moreover, G = G¢LJGleGA where the limit laws in these three
classes are as follows (the parameter o is any non-negative

constant) :

‘0 (x < 6},
(3.2) G(x) = ¢ (x) = { o -
exp{-x ) (x>0}
exp(~(-x)%) (x < 0),
(3.3) cx) = ¥ (x) = {
1 (x > 0);
(3.4) G(x) = A(x) = exp(-e %) (-w<x<®) .

>,«.,-‘:-_‘,3,‘

G




Suppose that for families of sequences {wn(y)} and

{vn(é)} as in Section 1 we can write ¢ = &(y) such that

5(v) v 0 as vy + 1 , and that there exist functions a(y) and

b(y) with a(y) >~ 0 such that
{3.5) aM+b = aly)Mly ,&{y}): w,v) + biy)

converges to the limit law H as y * 1 .

THEOREM 2. If aM+b at (3.5) converges weakly to the

limit law H as vy t+ 1 , then for every integer

k=1,2,...
(3.6) Mk = Mk(é,y(y);w,v) S :28 g :(Y)Xnk-vnk(f(\))‘
/k

~aversely,

the convergence of aMk+b for any integer k implies the

has aMk+b converging weakly to H = (H)1

convergence of aM+b to a limit law H and hence of aMk+b
1/k

to (H) for every k .

Proof. Since wn(v) 4+ 1 and vn(é(y)) +0 as y t+ 1,
sup {w_(y)X_ - v _(8(y))} » sup X (vy*1)
O<n<r n n n O<n<r n
for each positive integer r . Consequently, defining

M(r) = sup{w_(Y)X_ - v_(&(y))},
nzr n n n

it follows from (1.4) that for each such r that

Pr{M = M(r)}+1 as vy + 1 . Then, for any a(y) and b(y) ,

we have as vy + 1




(3.7) sup |Pr{aM+b < y} - Pr{aM(r)+b < y}| < Pr{M#M(r)}: -~ 0

~o<y<o

Fix the integer k>1 , and let H(y,r) denote the d.f.

of aM(r)+b so that

BT ) = 1 Fly-bra (v () /20w ()
n=rk
k-1 «
= f I_’ F![ (y-b(y)+a(Y)+a('y)vnk+j (+)) /a('.»)wnk+j )]
j=0 n=r
By the monotonicity properties of {wn(y)} and {vn(\)} in n ,

each infinite product on the right-hand side is bounded above

and below by Héy,r+l) and Hé\’r) , respectively, where
(Y,r) = 3 (oo , e ()
Hy d z E F(y b(Y)+a(Y)vnk(\))/a(\)unk(v);
n=r
{Since F(0+) <1 , we need only consider
y-bily) +a(y)v_, (v} > 0.) Therefore
H(Y’rk)(y) < (Hk(w,r+l)(y»k < H(\.(r+l)k)(y)_
But it follows from (3.7) that for each r and k f
-¢»<y<°° *

as Yy t+ 1, and by taking r = 0 and using (3.7) a second

time it also follows that

(3.8) sup |Priamsb < y) - P yn¥p .0 .

_oo<y<co

The argument establishing (3.7) can be used to show that




(3.9) sup (n, YWy -8 Oy -0

-l (y<oc

for «y*1 . Combining (3.9) and (3.8) proves the results as

claimed.
COROLLARY 2.1. M{y,6(v)) has a limit law in G if and only
if for each k , Mk(y,é(y)) has a 1imit law in G . In this case

the limit laws of M and Mk are of the same type.

Proof. Recall (cf. (3.1)) that the class G has the
property that Gé€G if and only if ¥ e6 for every positive
rational g , and that the laws G and (G)? are then of the
same type. The assertion now follows from the theorem.

Another corollary also follows immediately

COROLLARY 2.2. H€ G if and only if each Hk is of the same

type as H

THEOREM 3. I1f for each k there are constants ak, bk

and a function fk(y) such that Mk(Y)zd ak M(fk(\))+bk then

HE G

Proof. Let a(y)M(y)+b(y) converge weakly as 3y 4 1 to the
limit law H . Then by Theorem 2 , a(y)Mk(\)+b(w) converges
weakly with limit law Hk = (H)l/k . But we can also express

the convergence of M as a(fk(y))M(fk(y))+b(fk(y)) converging
weakly with limit law H . Consequently, by Theorem 2.1.1

of de Haan (1970), H and Hk are of the same type, and the theorem

follows from Corollary 2.2.

Example 1. Limit law for Y¥Y(y) . Referring to (1.2) , it is

clear that

nk k
sup{y X .} =_. Y(y) ,
n>0 nk a

(113

Yk(y)




(9]
w

so limit laws for Y are in G .

Example 2. Limit law for Z(¢) . Referring to (1.3) ,

zk(é) - :ug{xnk-nké} =3 Z2(x%) ,

so limit laws for 2 are in G .

It is important to note here that no claim is made about
the limit laws of Y(y) and 2Z(¢) being the same, or being

the same as for Mn .

Example 3. Limit laws for polynomjal-weights. Suppose

w (y) = (1+n(1-snF, v ({) =0

Then taking hiy) = (yllr-l)/(l~y) , a.s. finiteness of

l/x

M(y;w) 1is ensured by the finiteness of EX (cf. Theorem 1).

Further ,

M (yiw) =y M(L=K(1-Y);w)

so limit laws for sup{X /(l+n(1-}nr} are in 6
n>0

1

Example 4. Limit law not in G . Given i.i.d. {xn. .

suppose that both {Mn) and 2(§) have limit laws but that the

limit laws differ. Introduce wn(é)'s 1 and vn(6)=(r({)-n)+‘
for some integer-valued function r(.) to be specified. Then
= ¥ - - - A o=
M(¢) rs]\:g.xn (r(:) n) 4 dmax(Mr(:),Z( ),
with M and 2(8) independent. By choosing r(:) so that

r(d)
r{é)+ « (&+0) and Pr{M(&) = Z(8) = 1-Pr{M(§8) = Mr(é)}j»o or 1

as ¢ - 0, then any limit law for M(&)¢ G because the d.f,

is the product of two different types of d.f. in G




In a little more detail,

X. 1is
i

part of

whenever

s 3
egual o

is

lim pris?/ (@1 z(5) <y}
20

¢a for some

1/60/(a-1)

a ,
l/¢ is an integer,

, while the limit law of

and define
Since the law of

then the limit law of
61/(a—1)

for example, suppose the d.f. of
as the integer

equals ¢Q
1/ (a-1),

r(f)

Z(8) (cf. Theorem 7 below)




4. Domains of attractions for weight functions

In detailing the precise analytical form of a (non-trivial) limit law

as y + 1 for the r.v.s M(y,8(y);w,v) , equivalently of a 1imit fer

Pria(y)(M{y,8(y);w,v) + b(¥y)) < y)

nFL(b(y) + v (y) + y/a(y)/w ()3,

n=0

it is evident that some assumptions are needed concerning the way that
F(x) 1 as x ~+ £ , and that for each fixed v we must have

(4.1) Tim inf{(b(y) + v () + y/a(y))/w (=)} > &

N
The condition (4.1) implies that

1og #YV(y) = - £ 10g FLBGIH (10970030 ()
n=
(4.2) '

= (1+0(1)) ¥ [1- FUb(y)+v (v)+y/aly)) w (1))]
n=

0

where, because by assumption H(*)(y) has a non-trivial limitas vy + 1 ,

the term o0(1) converges to zero uniformly on bounded intervals for y .

A1l the results in this section essentially start from this representation (4.2).
Recall that a function U mapping R = (0,o) into itself is said to

vary regularly (at infinity) with exponent o , -= <¢ < = , when

(4.3) Tim U(tx)/U(x) = t° (a1 x € R

X0
Gnedenko showed that Mn has a 1imit law in Gy, if end only if & = o
and 1 - F(x) varies regularly with exponent -a , and that ¢y is then
its 1imit law, while its 1imit law is in Gy if and only if £ < « and

1 - F(l-x']) varies regularly with exponent -a , and that ¥ = is then




its 1imit law.

THEOREM 4.  Suppose that 1-F(x) is regularly varying with exponent

-a < 0, and that

(4.4) “ > 3?0 [1-FO/M (Y] = (y+1).
n=

Then the limit law of M(y;w) exists énd equals ¢ € G .

Proof. The finiteness of the sum at (4.4) allows us to conclude from i

Theorem 1 that M(y;w) < = a.s. d

From the monotonicity of {wn(y)} it follows that the function a(y)

defined by

(4.5) aly) = supla: £ [1-F(1/aw ()< 1)

n=0

decreases monotonically in y and +0 as y-1 . By the right-continuity

of F and the strict monotonicity in n of each sequence {wn(y)} .

12 F 0~ PO/ (D12 1= T prix = 1/l (1)
n=0 n=0

> 1-Prix>1aly)r -1 (v ).

Consequently,

(4.6) %"OU - F(/a(yw (¥))T » 1 (v=1) . ;
ns
For each y>0 we have from (4.2) with vn(y) =0 and b(y) = 0 that

<o K (y) = (140010) £ 11 - Fly/aluimg ()]
n=

where the term o(1) is bounded by [1-F(y/a(y)]/2F(ysa(y)) . By the




regular variation assumption concerning F ,

[V - Fly/a(yw ()01 - FO/alyw, (¥))] » y™°

as v > 1, and this convergence is uniform in n because 1 = wo(y) > wn(y)

(all n and vy) . Thus

o

£ [1-F(17a(v)w, (+))]

Jog K (y) = (1o(1))y™®
n=0

-y =-og ¢ (y) (1)

Example 5. Suppose F(x) = ¢4(X) . Then, much as in example

6.1 of Daley and Haslett (1982), for 0<y<l and y>0 we

have

/0 sup(y® X} <y} = exp(-y™%) = ¢, (¥)

n>0

Pr{(1-+vy%)

The limit behaviour is trivial!

THEOREM 5.  Suppose that £ <> and 1 - F(i-x-l) is regularly varying with

exponent -o . Then the limit law of Y(y) exists and equals ¥ 41 G .

Proof. By rescaling we can and shall assume that £=1 . Define af(y) by

a(y) = inf{a>0: a ' (1-F(1-a"")) < -(a+1)logy} ,

so thatas vy + 1, aly) =
Write H(Y)(y) = Pria(y)(Y{y)-1) < -y) (D<y«<e)

= Pr{sup Y"Xn < 1-y/a(y)}
n>0

|
|
|




o e+ s o o

Since a(y) » = (y 4 1), we my assume that y<a(y) , and then there is

N(y)

a least integer N{y) such that v <1-y/aly) . For n > N(y) ,

y"xn < 1-y/a(y) a.s., and therefore, as at (4.2) ,

N(v)-1
-log Pr{ rb iy, <V -y/alx)))
n=

- tog M (y)

N(y)-1 -n
(1+o(1) = [1-F((1-y/a(~IN]
n=0
where, since 1-y/a(y) > 1 (y+1) , the term o(1) is bounded for
given y by [1-F(t-y/a(x)}]2F(1-y/a(v)) .
Since the terms in the last summation decrease monotonically in n ,
and each term+ 0 as y ¢t 1, the sum can be approximated by the integral

Fle™ 199Y(1 - y/a(v)) ) Jdu

Tog(1-y/a(y)/1logy
(4.7) f (-

0

= (-'logy)'.| r (- F('I-v'])]v'](v-l)']dv
a(y)/y
on substituting 1-y~! = gTuTogy (1 -ysaly)) ,

= (- Togy) T(1+0(1)) (y/{o#))a(v))[1 - F(1-y/a(+))]

by the integral theorem for the tails of regularly varying functions (e.g.,
Theorem 1 of VIII.9 of Feller (1966)). But by definition of a(y), for

any ¢ >0,

1< [-FO1-1/(a(y)-en1/0aly) - €) (a*1)(-10gv) ]

J1-FQ-1/(ay) -€)) . asx) C1-F(1-1/a
‘TLF(T_W Yaly alyy-¢ ~ aly){o*T)(-Togy)

= (1 +0(1))[1 - F(1 - 1/atrDV/Ga(y)(a+1) (-Togy)I< T+0(1)




as y-~ 1, and thus [1-F(1-1/a(y))] /a{y)(at1)(-Togy) ~ 1 as y + 1 .

Consequently,
- t0g K (y) = (1e0(1))y""! (h=1),

proving the theorem.
Comparison of Theorems 4 and 5 prompts the question as to whether

Theorem 5 may hold with a general class of weight functions as in Theorem 4.

The following example shows that any such result would require such a class

to be more restricted than the general class of Theorem 4.

Example 6. Suppose we are giveni.i.d {erl with l—F(l-x-l) regularly varying
with exponent -a . Then the limit law for {Mn} is LA while the limit

law for Y(y) is V¥ Much as in Example 4, consider the weights

o+l ’

Y(""‘(Y))+ where r(y) is an integer. Then

miy) = sup {y("'r(Y)X+Xn] =4 max(M
n>0

with M ) and Y(y) independent. By choosing r(y) appropriately,

ry
a limit law may be exhibited for M(Y) as the product of the limit laws Yy

and Wu+1 of Mr(y) and Y{(y). Hence, it is not in G .
For example, if Pr{X <1 -x} = min(1,e7%) ,

Pr{r(y)(Mr(Y)—1) < -x} = e .

Let a(y) be determined for Y(y) as in Theorem 5. If we now set r(.)

equal to the integer part of a(y) , then a non-trivial limit law for

(Y)-l) exists and is a product as asserted. 1If either

(vy)

a(y) (M
r(y)=ofa(y)) or a(y) =o(r(y)), then any limit law for M is trivial
(i.e., equals 0 or 1).

THEOREM 6. Suppose that ¢ <¢ and is such that {Mn\ has ./ as its limit

law. Then a limit law for Y(y) exists and it too equals A.

Proof . Appealing to (4.2) we seek functions a(y) and b(y)

» -~ R




such that

(4.8) fou - F(y M (bly)+ysaly))] » €Y (y+1)
n=

Observe that, because {Mn} has limit law A ,

(4.9) [1-F(x+yR(x)) /01 - F(x)] » e

as x->£{ where

(4.10) R(x)

£
[ -F(x)]! j [1 - F(u) 1du

X

(see e.g. Theorem 2.5.1 of De Haan (1970)), for which as x+t¢ ,

(4.11) Rx)

i = ® R(X)_’ i ©
X 0 if &£ or W 0 if £«< .

+

Further, from (4.9) it can be checked that the convergence there is uniform

on compact sets, and therefore (as will be needed below)

-) -1
1-F(u)ld [1-Fu)ld
> J: u [ u)l 3/& J: u)]du
- R(x)) d
- JO 1(§ F(%)(X) ’ 1+yREx5/x

—
v

(4.12) 1-eY'  (x»a),

[RYZ

by restricting the range of integration to the closed interval [0,y']
for some finite y' .

Supposing a(.) and b(.) are given, and that y > b{y) (for otherwise the
sum at (4.8) is not convergent), the sum at (4.8) is approximated as

at (4.7) by
IIOQ[(b(Y)*.V/a(Y»/mogy[] _ F(e' u 109 Y (b(\)*‘y/a(\’))]du

0

- --..,-“A-?_a"r: = .. W



where the upper 1imit = « if £ =« , and the approximation is asymptotically
exact provided F(b(y) + y/a(y)) -1 . Assume this last holds.

Substituting v for the argument of F , the integral equals

a B
(-Yog v) v (1 ~F(v))dv .
b(v)+y/ a(y)

We now treat the cases £=x and £<« separately.

Supposing £== , it follows from (4.12), written as

r v - F(v)]dv/x'] r [1-F(v)lav ~» 1 (x»>) ,
X X

that the sum at (4.8) equals

(1+0(1)) (- Tog )~ [bly)+y/aly)]™! rbw/ e
b{y)ty/aly

= (1+0(1)) (- 10g v) " [b(¥)+y/a() 17 [1 - F(b(¥)+y/a(+)) IR(biv)+y/a(1); -

Define b(y) as the root in (0,2} of

£
(3.12) J (1 - F(u))du
b(y)

b(v)(-Togv)
(1 - F(b(Y))R(b(1))

and set a(y) = 1/R(b(y)) , so that b(y) >~ £ == and b(y) + y/a(y)-«
(y + 1). Then from (4.9),

1-F(b(y) + y/a(y) = 1 -F(b(y) + y R(b{y))

= e Y (1+0(1))(1 - F(b(y));

from (4.11), b(y) + y/a(y) = b(y)[1+y R(b{y))/b(v)]

= (1+0(1))b(y)

Lt 2handh s 2k .

lll




and from (2.5.25) of de Haan (1970),

R(b(y) + y R(b(y))) = (1+o(1))R(b(y)) .
The sum at (4.8) is now seen to be equal to (1+o(1))e_y, and the

case §{ =x 1is established.

In the case £ <« , with a(-) and b(-) as at (4.12), it is

trivially true that when b(y) + y/a(y) > £ ,

;
(~Togy)”] [ v (1 - ) av
b(y)+y/a(y)
R a ¢
= (-Togy)™ (1+o(1))e " | (1 - F(v))dv

b(y)+y/a(y)

and the similar analysis as for £=« follows to establish the result.
Theorems 5 and 6 with the case wn(y) = y" of Theorem 4 can be summed

up as follows :

Suppose Mn has a 1imit law GEG; then Y (y) has a limit law in G,

being equal to G unless G = Y, in which case the limit law is ¥4

Equivalently, the d.f.s F yielding 1imit laws for Mn in G, Yyield
limit laws for Y(y) in G\{Wa : 0<a<1} . From Example 1 , all the
1imit laws for Y{y) belong to G , so there remains open the question

as to whether there exists any F yielding a limit law for Y(y) in

{ :0<a<l},
(‘ -




5. Domains of attraction for location functions

The same prefatory remarks to section 4 apply in considering
possible limit laws for r.v.s like {2Z(8) : 6>0} . Our results
are not quite as general as for M(y :w) in that it is only for
certain d.f.s for which A is the limit law of {Mn; that we
have obtained results with fairly general seguences {vn(é)} (see
part (b) of Theorem 10 and section 6, but note also Theorem 8 where
v (&) = n'/%s ).

THEOREM 7. Suppose that 1 - F(x) is regularly varying with

exponent ~-a < -1 . Then the limit law of Z(3) exists and equals

Oy -
Proof. For all sufficiently small 6>0 define
L -1 -1 :

a(é) = supfa > 0: a (1 - F(a 7)) 2 (« - 1)3} ,

so that a(f) +0 as §&6+0 . Using (4.2), we study for 0 <y < .+ ,

H(d)(y) = Pr{a(s§) sup{xn -né} <y}

= I F(né+ ys/a(s)) ,
n=0
SO
~log H'® (y) = (1+0(1)) £ [1 - F(neé+ y/a(s)))
n=0
=(1+ou))f [1 -F(Su+y/a(i))ldu
0
= (1+ -1 (7 1
= o(l))é J [l - F(v)) dv
y/a(s)
(5.1) : = (1+0(1))6 Y (a-1)"Y(y/a(6))(1 - F(y/a(s)))

A+oNy* La)) 1 - F(l/a(eN/(a-1)8




y
a=-1
(5.2) = (l+o(l))y
provided
(5.3) (a(8))"Y1 - F(1/a(8))1/(a-1)6 » 1  as 40 .

But, much as in the proof of Theorem 5,

12 (l/a(8) - €)[1 - F(l/a(8) - €)i/(a=~1)¢

= l-F(l/a) - e) |y _ a(s)) . Lo EQza())

1 - F(l7a($)) a(é)(a-1)86

and since by right-continuity the last term > 1 (all 3§) , and

the other terms -+ 1 as a(§) » 0 , (5.3) holds and the theorem is

proved.
Remark. Ar.v. X with ¢ as its d.f. has EX < « if anc only if
4 > 1 . Since

sup{xn -né} <« a,s.
n
if and only if

x> £ "1 -« F(né)l = &~ [ {1 - F(v)ldv = § ~ EX |,

the constraint on the exponent o in the theorem is seen to be

necessary.

THEOREM 8. Suppose that 1 - F(x) is regularly varying with

exponent =-u, and for 0 < B8 < a define

- _ 1/8
(5.4) ZE(G) Z sup {xn n 8 .

n>20

— - —

R ™ o R




Then a limit law for 26(6) exists and equals $oums

-

Proof. Let a(é) be a function to be defined later, with
a(éd) - 0 as & » 0 , and such that a(é)ZE(é) has a non-trivial

limit law. with B (y) = Pria(8)z,(8) <y}

(S8)

-log H {y)

(1+o(1)) T f1 - FntEs+y/ace))]
n=0

(L+o0(1)) J [1 - F(y/a(¢) + ¢ ul/i)ldu
0

(l+o(l))c5§6 J Eve_l [1 -~ F(y/a(s) + v)Ilidv

0

i}

(5.5)

We now establish the following analogue of Theorem 2.6 of

Seneta (1976).

LEMMA. When G(x) varies regularly with exponent -u and

x> s >0, the function

® 81
(5.6) GB(X) H J v G{(x + v)dv
0
is regularly varying with exponent o-f ; specifically,
(*  a_ -
(5.7) G (x)/x° G(x) - | w1+ W au (x + <)
0

Let y > 0 be fixed for the time being, and consider

Sgt®) ryx v)g-1(, , v)-u av
g Yo X ) x | X
x"G(x)
Tl ) e g
o L X x X

x% G(x) J




* { -
(5.8) . { ii B-1 G(x + v) %}
yx G(x)
For 0 < : < 4 , the integral
[ fyE iyl
o (X1 4 x | x
is a beta function, and on 0 S v € yx , (x+v)? G(x+v)/x" G(x) +1
as x-=x , Conseguently the first integral -+0 as x-<« by

dominated convergence.

As in the proof of Theorem 2.6 in Seneta (1976), with

N - - [T a- -
X : v" i G(v+x)dv = x F J v l(v-+x) “ L(v+x)dv

)Yx yx
where L(v) = v'G(v) is a slowly varying function,
<) sup vTinwy . (Rl v e gy
VZX+yx JYX{X' L X b4
~ x4 yx) T L(x+yx) x7270 f (X}B‘l {14-!} —a+n dv
yx(x X X
AT ) -1 v |-a+n dv
= (Y'*l)l 'G(x+yx) [‘_’.]6 |l+—} dv
Y lyx X k X X

it follows that the modulus of the second integral at (5.8) is at

most

v )-a+n dv
X

(y+ 11977 (G(x +yx)/G(x)) j [!]8‘1 [1+
yx %




= +om)) (y+1)7" {%F*1[1+

v o {~a+r dv
X x

which may be made arbitrarily small by taking y sufficiently

large. The lemma is now established.

Applying the lemma to the expression at (5.5), we have

(6) (1+0(1))E 5 " (y/ali))" 11 - F(y/a(:))

-log H (y)

(1+o(1))eé Sy =8 i)™ (1-F(1ra( )

Thus, determining a(é) by

(5.9) a(a) = supla > 0: [8(1 - F(1/a)) 2 /sa>1.

and establishing the analogue of (5.3), -log H(:)(y) *yQ(‘ =) !

(6§ +0) and Theorem 8 is proved. 1

- |

THEOREM 9. Suppose that & <« and that 1 - F(i-x l) is
regularly varying with exponent -u . Then the limit law of Z (')
exists and equals WQ+1 .
Proof. Much as in the proof of Theorem 5, we show that, taking
£ = 1 without loss of generality,

Pr{a(¢) sup{xn-né} € -yl o~ exp(—y°+l) (0 <y < x)
where for general 2
(5.10) a(s) = inf{a > 0: [1 - F(2-128)1/%a < (a+1):} .
The details are similar and omitted.
THEOREM 10. (a) Suppose that F 1is such that {Mn} has A

as its limit law. Then a limit law for Z(8) exists and it too

equals A .

vt e wm—




(b) If additionally £ = =« and

R(x) = j {1 - F(u)ldu/(1 - F(x)]
X
(5.11) = E(X-x|X > x)~1/u (x » =)
for some 0 <o < x , then for sequences {vn(i)r satisfying
(5.12) I Pr{iX>v (8)} <,
n

n=0

(5.13) Pr{sup{Xn-vn(é)} - a(8) € y/b(é): ~exp(-e ) (¢ v 0)

where for sufficiently small & > 0 ,

(5.14)

and

(5.15)

Proof.

define

Now the

a(é) = supfa: I [1 - F(a(s) + v (6)1 > 1)
n=0

b(d) = 1/R(a(d))

In the particular case vn(é) =né of part (a), we can

a(d) in place of (5.14) by the root of

L
1 =61 [ [1 - F(v)ldv
‘a(s)

J {1 - F(a(8) + 8 u)ldu
0

(1+0(1)) T (1 - F(a(8) + n §)1 .
n=0

convergence we seek to show is that




exp(-e ¥) = 1lim Prisup{X - v (8)} - a(é) < y/b(é))
§40
= 1lim I F(a(s) + y/b(s) + vn(é))
8§+40 n=0
= lim H(é)(y) say.
540
Much as before, and in the case vn(é) =né ,
~log H'¥ (y) = (1+0(1)) T L1 - F(a(é) + y/b(&) + ni))
n=0
(5.16) = (1+0(1)) J [1 - F(a(?) + y/b{(d) + ¢u)ldu
0
= (L+o(1)) &1 J (1 - F(v)ldv
a(8)+y/b (&)
= (1+0(1)) 6 2 [1-F(a(8) +yRENIRGA() +y B())
= (1+o(1)) 6 L [1-Fanie Y R(a(:) +y R(3))

using Theorem 2.5.1 of de Haan (1970),

(1+0(1)) €Y R(a(8) +y R(8))/R(a(é))
'

g -

as at de Haan's equation (2.5.9). Part (a) is proved.

For part (b), we have in place of the relation above (5.16)

that

-log #'%) (y) = (1+0(1)) I [1-F(a(é) +y/bl8) +v,(6))]

‘e e - e e,




S
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In view of (5.14), in which, much as in section 4, the infinite
sum is asymptotically equal to 1 for §+0 , it is therefore

enough to show that we may write

N ™8

(1 - F(a(&) + y/b(8) + Vn(GD]

n=0

= (1+o(l))e Y [1 - F(a(8) + y/b(3))7 .

I 18

While a direct proof can (presumably) be constructed, it is simpler
to appeal to the duality argument of section 6 and apply Theorem 4.

Details are given in the next section.

"
Ig.
Bov Y




6. Duality between scale and location functions

Since for positive {Xn} and 0 <y<1

sup {y" X_} = exp( sup {logx - n log(w-l)f)
n=20 n n=20

= exp( sup {W - n ¢ 4
n=0

where wn = logxn and ¢= -logy , it is proper to exhibit any

relationship between the results of sections 4 and 5. For brevity, !
write DAM(.), DAV(.) and DAZ(.) to denote the domains of attracticn

of the limit law (.) for the respective seguences :Mn},1Y(,)v, anc

<2(8): . Then most of Theorems 4 to 10 can be phrased as follows:
F € DAM(¢Q) = F € DAV(¢Q) and (when oa>1)

F € DA, (¢ ) ‘

FE€DA (Y ) =FE€DA, (Y ,4) and F € DA, (» 1) 7

F € DAM(A) =F € DAV(A) and F € DAZ(A) .

When the d.f. 1 - F(x) of the r.v. X varies regularly with
exponent -a , [1 - F(tx)1/[1 - F(x)J»t™ % (x-<) for 0 <t «

Consequently, since

Priw > oY eT/u}

Pr{logW > y + 1/a}

T

(1+0(1)) e ' priw > eY)

(1+0(1)) e ¢

Pr{logWw > vy} ,




the r.v. W=e" has its a.f. € DA (A) with E(M-x|W > x) »1/a

as x—+« ., Conversely, when W = e* satisfies these conditions,
1 - F(x) varies regularly with exponent ~a .
It is this converse statement which enables part (b) of Theorem

10 to be deduced from Theorem 4. To see this, write wn(é) =

exp(-vn(S)) ’ al(é) = exp(-a(d)) , Wn = exp(xn) . 50 that

L e

X, = vy (8) - a(d) < y/b(¢)
if and only if

al(d)wn(é) W < exp(y/b(¢)) .

Now

18
I ™8

Pr{Wn > l/wn(d)} =

{ >
. . Prkxn vn(é)}

n 0

whose finiteness is assumed at (5.6), and

a;(é) = exp(-supla: I [1 - F(a(8) + v (&)1 =>1})
n=0
= exp(-supla: I priw> l/e—a(é)wn(é)} > 1})
n=0
? = sup{al: ? Priw > l/alwn(é)} < 1) .
: . n=0

The condition at (4.4) is satisfied and a(y) at (4.5) may be re-
placed by al(é) , and Theorem 4 therefore applies to sup{wn(é) wn}.

ACKNOWLEDGEMENT We thank Professor M.R Leadbetter for his interest

in the work, particularly of section 3, and Mr Deng Yong Lu for his

comments on the preliminary version of some results that prompted the

more extended work given above.




REFERENCES

DALEY, D.J., (1983). A thermal energy storage process with
controlled input (II): some complementary results.

DALEY, D.J., and HASLETT, J., (1982). A thermal energy storage
process with controlled irput. Adv. Appl. Probab. 14, 257-271.

DE HAAN, L., (1970). On Regular Variation and its Application to

the Weak Convergence of Sample Extremes. (Mathematical Centre

Tracts, 32). Mathematisch Centrum, Amsterdam.

FELLER, W., (1966). An Introduction to Probability Theory and

its Applications, Vol. 2. John Wiley, New York.

GALAMBOS, J. (1978). The Asymptotic Theory of Extreme Order Statis-

tics. John Wiley, New York.

GNEDENKO, B.V., (1943). Sur la distribution limite du terme maxi-
mum d'une série aléatoire. Ann, Math, 44, 423-453.

SENETA, E., (1976). Regularly Varying Functions (Springer Lecture
Notes in Mathematics, 508) Springer-Verlag, Berlin.




